Fabrication and characterization of a cost-effective electrochemical modified electrode for paracetamol determination in pharmaceutical infusion solution
DOI:
https://doi.org/10.5281/zenodo.18105896Keywords:
Pencil graphite electrode, paracetamol, pharmaceutical infusion solution, voltammetryAbstract
Paracetamol (PAR) is a pharmaceutical active ingredient widely used for analgesic and antipyretic purposes. In this study, for the electrochemical determination of PAR, 4-amino-5-(4-pyridyl)-4H-1,2,4-triazole-3-thiol (4P3T) compound was modified on a glassy carbon electrode (GCE) to prepare an electrochemical sensor (4P3T-GCE). Characterization of the modified electrode was carried out using Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) techniques. The prepared and characterized sensor was used in the electrochemical determination of PAR. Electrochemical oxidation and quantitative determination of PAR were carried out by using the differential pulse voltammetry (DPV) method. PAR determination was successfully carried out in pharmaceutical infusion solution samples using 4P3T-GCE by the standard addition method. The fabricated sensor showed two linear working ranges: 0.55–100 µM and 100–785 µM. The limit of detection (LOD; 3s/m) value was found to be 0.16 µM, and the limit of quantification (LOQ; 10s/m) value was found to be 0.53 µM. The obtained results reveal that the modified electrode is an effective electrochemical sensor for the determination of PAR in pharmaceutical samples due to its features such as high sensitivity, wide linear range, and low LOD.
References
1. Bakht K, Alrowaily AW, Alotaibi BM, et al (2025) Fabrication of CoFe2O4/PANI nanocomposite modified glassy carbon electrode for the electrochemical determination of paracetamol. Journal of the Indian Chemical Society 102: 102080. https://doi.org/10.1016/j.jics.2025.102080
2. Shih Y-J, Lin S-K, Wu Z-L, Chen W-H. (2024) Cobalt and zinc imidazolate encapsulated in reduced graphene oxide and the derived nitrogen-enriched carbon frameworks (CoNC@rGO) for electrochemically sensing acetaminophen (APAP). Chemical Engineering Journal 481: 148437. https://doi.org/10.1016/j.cej.2023.148437
3. Van der Marel CD, Anderson BJ, van Lingen RA, et al (2003) Paracetamol and metabolite pharmacokinetics in infants. European Journal of Clinical Pharmacology 59(3): 243–251. https://doi.org/10.1007/s00228-003-0608-0
4. Kassa A, Amare M (2019) Electrochemical determination of paracetamol, rutin and sulfonamide in pharmaceutical formulations by using glassy carbon electrode – A review. Cogent Chemistry 5(1): 1681607. https://doi.org/10.1080/23312009.2019.1681607
5. Wang Y, Yang G, Chu M, et al (2024) Construction of MOF-74-derived CuFe/C alloy highly dispersed on ultrathin single layered reduced graphene for electrochemical determination of paracetamol. Journal of Alloys and Compounds 998: 174989. https://doi.org/10.1016/j.jallcom.2024.174989
6. Sadok I,. Tyszczuk-Rotko K (2015) New, simple and sensitive voltammetric procedure for determination of paracetamol in pharmaceutical formulations. Insights in Analytical Electrochemistry 1: 1–8. https://doi.org/10.4172/2470-9867.100001
7. Teker T, Bağdiken FN, Aslanoglu M (2025) Ultrasonic-assisted development of a high-sensitivity voltammetric sensor based on graphene nanoplatelets and hafnium oxide nanomaterials for paracetamol detection. Microchemical Journal 213: 113862. https://doi.org/10.1016/j.microc.2025.113862
8. Arancibia V, Penagos-Llanos J, Nagles E, et al (2019) Development of a microcomposite with single-walled carbon nanotubes and Nd2O3 for determination of paracetamol in pharmaceutical dosage by adsorptive voltammetry. Journal of Pharmaceutical Analysis 9: 62–69. https://doi.org/10.1016/j.jpha.2018.11.005
9. Cabas Rodriguez JA, Bonetto A, Alaniz RD, et al (2024) Electrochemical sensor based on a glassy carbon electrode modified with a 3D carbon nanoporous composite for the detection of paracetamol in pharmaceutical samples. Journal of Electroanalytical Chemistry 973: 118689. https://doi.org/10.1016/j.jelechem.2024.118689
10. Doğan B, Elik A, Altunay N (2020). Determination of paracetamol in synthetic urea and pharmaceutical samples by shaker-assisted deep eutectic solvent microextraction and spectrophotometry. Microchemical Journal 154: 104645 https://doi.org/10.1016/j.microc.2020.104645
11. Easwaramoorthy D, Yu Y-C, Huang H-J (2001) Chemiluminescence detection of paracetamol by a luminol–permanganate based reaction. Analytica Chimica Acta 439: 95–100. https://doi.org/10.1016/S0003-2670(01)00968-0
12. Migowska N, Caban M, Stepnowski P, Kumirska J (2012) Simultaneous analysis of nonsteroidal anti-inflammatory drugs and estrogenic hormones in water and wastewater samples using gas chromatography–mass spectrometry and gas chromatography with electron capture detection. Science of the Total Environment 441: 77–88. https://doi.org/10.1016/j.scitotenv.2012.09.043
13. Kannan K, Ayyadurai N, Sevvel P, Ranganathan TV (2017) A highly selective and simultaneous determination of paracetamol and dopamine using poly-4-amino-6-hydroxy-2-mercaptopyrimidine (Poly-AHMP) film modified glassy carbon electrode. Journal of Electroanalytical Chemistry 791:8–16. https://doi.org/10.1016/j.jelechem.2017.03.002
14. Zhao S, Bai W, Yuan H, et al (2006) Detection of paracetamol by capillary electrophoresis with chemiluminescence detection. Analytica Chimica Acta 559: 195–199 https://doi:10.1016/j.aca.2005.11.071
15. Biswas S, Chakraborty D, Das R, et al (2015) A simple synthesis of nitrogen doped porous graphitic carbon: Electrochemical determination of paracetamol in presence of ascorbic acid and p-aminophenol. Analytica Chimica Acta 890: 98–107. https://doi.org/10.1016/j.aca.2015.07.045
16. Tabanlıgil Calam T (2025) A new modified electrode for the simultaneous determination of hydroquinone and catechol in environmental samples and optimization of voltammetric parameters by response surface methodology. Journal of Environmental Chemical Engineering 13: 118155. https://doi.org/10.1016/j.jece.2025.118155
17. Girum W, Kassa A (2025) Green voltammetric strategy for sensitive determination of paracetamol in pharmaceuticals and serum using alizarin red S-modified glassy carbon electrodes. Sensing and Bio-Sensing Research 48: 100792. https://doi.org/10.1016/j.sbsr.2025.100792
18. Kannan A, Sevvel R (2017) A highly selective and simultaneous determination of paracetamol and dopamine using poly-4-amino-6-hydroxy-2-mercaptopyrimidine (Poly-AHMP) film modified glassy carbon electrode. Journal of Electroanalytical Chemistry 791: 8–16. http://dx.doi.org/10.1016/j.jelechem.2017.03.002
19. Bayram E, Akyilmaz E (2016) Development of a new microbial biosensor based on conductive polymer/multiwalled carbon nanotube and its application to paracetamol determination. Sensors and Actuators B 233: 409–418. http://dx.doi.org/10.1016/j.snb.2016.04.029
20. Bard AJ, Faulkner LR (2001) Electrochemical methods: Fundamentals and applications. New York: John Wiley and Sons, 304–309.
21. Zhong W, Yang J, Yansha G, et al (2021) Electrochemical determination of paracetamol using MXene/single-walled carbon nanohorns composite as sensor. International Journal of Electrochemical Science 16: 211150. https://doi.org/10.20964/2021.11.39
22. Soares LA, da Silveira TFS, Silvestrini DR, et al (2013) A new hybrid polyhedral cubic silsesquioxane chemically modified with 4-amino-5-(4-pyridyl)-4H-1,2,4-triazole-3-thiol (APTT) and copper hexacyanoferrate(III) for voltammetric determination of nitrite. International Journal of Electrochemical Science 8: 4654–4669.
23. Nkune NW, Kruger CA, Abrahamse H (2022) Synthesis of a novel nanobioconjugate for targeted photodynamic therapy of colon cancer enhanced with cannabidiol. Oncotarget 13: 156–172. https://doi.org/ 10.18632/oncotarget.28171
24. Niaz A, Arain MB, Soylak M (2025) Highly sensitive and efficient voltammetric method for the determination of 4-aminophenol in paracetamol tablet and urine samples using screen printed carbon electrode modified with humic acid functionalized iron oxide nanoparticles. Inorganic Chemistry Communications 174: 114005. https://doi.org/10.1016/j.inoche.2025.114005
25. Stoytcheva M, Zlatev R, Velkova Z, et al (2023) The validity of using bare graphite electrode for the voltammetric determination of paracetamol and caffeine. International Journal of Electrochemical Science 18: 100120. https://doi.org/10.1016/j.ijoes.2023.100120
26. Demir E, Göktug Ö, İnam R, et al (2021) Development and characterization of iron (III) phthalocyanine modified carbon nanotube paste electrodes and application for determination of fluometuron herbicide as an electrochemical sensor. Journal of Electroanalytical Chemistry 895: 115389. https://doi.org/10.1016/j.jelechem.2021.115389
27. Tabanlıgil Calam T (2021) A novel, efficient and sensitive method for the simultaneous determination of riboflavin (vitamin B2) and pyridoxine hydrochloride (vitamin B6) in food and pharmacological samples using an electrochemical sensor based on 4,4′ -diamino benzophenone. Microchemical Journal 169: 106557. https://doi.org/10.1016/j.microc.2021.106557
28. Hanabaratti RM, Tuwar SM, Nandibewoor ST, et al (2020) Fabrication and characterization of zinc oxide nanoparticles modified glassy carbon electrode for sensitive determination of paracetamol. Chemical Data Collections 30: 100540 https://doi.org/10.1016/j.cdc.2020.100540
29. Laviron EJJ (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 101: 19–28.
30. Zhang X, Kang S, Chen L-W (2025) MOF-derived N-doped porous carbon anchoring atomically-dispersed Fe for electrochemical sensing of paracetamol. Microchemical Journal 212: 113394. https://doi.org/10.1016/j.microc.2025.113394
31. Ansen Z, Tabanlıgil Calam T (2025) Optimization of voltammetric parameters and sensitive determination of hazardous 2-nitrophenol in environmental media using a modified glassy carbon electrode based on 2-amino nicotinamide. Journal of Water Process Engineering 76: 108165. https://doi.org/10.1016/j.jwpe.2025.108165
32. Manjunatha KG, Kumara Swamy BE, Madhuchandra HD, et al (2021) Synthesis and characterization of MgO nanoparticle and their surfactant modified carbon paste electrode sensing for paracetamol. Sensors International 2: 100127. https://doi.org/10.1016/j.sintl.2021.100127
33. Sasal A, Tyszczuk‑Rotko K, Chojecki M, et al (2020) Direct determination of paracetamol in environmental samples using screen‑printed carbon/carbon nanofibers sensor – Experimental and theoretical studies. Electroanalysis 32(7): 1618–1628. https://doi.org/10.1002/elan.202000039
34. Tefera M, Geto A, Tessema M, et al (2016) Simultaneous determination of caffeine and paracetamol by square wave voltammetry at poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode. Food Chemistry, 210, 156–162. https://doi.org/10.1016/j.foodchem.2016.04.106
35. Wan Q, Wang X, Yu F, et al (2009) Effects of capacitance and resistance of MWNT-film coated electrodes on voltammetric detection of acetaminophen. Journal of Applied Electrochemistry 39(7): 1145–1151. https://doi.org/10.1007/s10800-008-9773-2
36. Teker T, Aslanoglu M (2020) Sensitive and selective determination of paracetamol using a composite of carbon nanotubes and nanoparticles of samarium oxide and zirconium oxide. Microchemical Journal 158: 105234. https://doi.org/10.1016/j.microc.2020.105234
37. Monteiro MKS, Santos ECMM, Silva DR, et al (2020) Simultaneous determination of paracetamol and caffeine in pharmaceutical formulations and synthetic urine using cork-modified graphite electrodes. Journal of Solid State Electrochemistry 24: 1789–1800. https://doi.org/10.1007/s10008-020-04722-y
38. Niedziałkowski P, Cebula Z, Malinowska N, et al (2019) Comparison of the paracetamol electrochemical determination using borondoped diamond electrode and boron-doped carbon nanowalls. Biosensors and Bioelectronics 126: 308–314. https://doi.org/10.1016/j.bios.2018.10.063
39. Bhardwaj V, Awasthi A, Pathania AR, et al (2026) Ni-doped Ti3C2 MXene@graphene for electrochemical detection of paracetamol. Materials Chemistry and Physics 349: 131774. https://doi.org/10.1016/j.matchemphys.2025.131774
40. Shafaq H, Anjum S, Muntaha ST, et al (2025) Design of La@ZnO/AuNPs/GO nanocomposites as an electrochemical sensor for acetaminophen detection. Sensing and Bio-Sensing Research 50: 100929. https://doi.org/10.1016/j.sbsr.2025.100929
41. Achache M, García-Guzman´ JJ, Seddik NB, et al (2025) Voltammetric detection of paracetamol using a novel Sonogel-Carbon material modified with monocalcium phosphate: An experimental and theoretical approach. Diamond & Related Materials 154: 112141. https://doi.org/10.1016/j.diamond.2025.112141
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Bulletin of Electrochemical Methodology

This work is licensed under a Creative Commons Attribution 4.0 International License.