Advances in Glucose Oxidase-Based Electrochemical Biosensors: Generational Development, Immobilization Strategies, and Nanostructure Applications


Abstract views: 21 / PDF downloads: 10

Authors

DOI:

https://doi.org/10.5281/zenodo.16949411

Keywords:

Electrochemical biosensor, glucose oxidase, glucose monitoring, enzyme immobilization, nanostructures, direct electron transfer, diabetes management

Abstract

Monitoring glucose levels is vital for the management of diabetes and other metabolic disorders, spurring extensive research into the development of reliable, sensitive and biocompatible glucose sensors. Glucose oxidase (GOx)-based electrochemical biosensors have evolved over time through three different generations, with each generation aiming to overcome the limitations of the previous one. First-generation sensors depend on oxygen as the electron carrier, while second-generation systems utilize artificial mediators that provide more stable and sensitive measurements at lower potentials. Third-generation sensors aim to enable direct electron transfer (DET) between the enzyme and the electrode, enabling the development of marker-free, biocompatible platforms suitable for continuous glucose monitoring. Enzyme immobilization methods such as physical adsorption, covalent binding, entrapment in polymer matrices, crosslinking and microencapsulation play a critical role in improving sensor performance, stability and reproducibility. Moreover, the integration of nanostructures such as graphene, carbon nanotubes, gold nanoparticles and hybrid composites on the electrode surface facilitates efficient electron transfer and improves sensor response by increasing surface area, conductivity and biocompatibility. This review provides a comprehensive overview of the basic principles, developmental processes and challenges of GOx-based glucose biosensors, with a particular focus on recent advances in enzyme immobilization strategies and nanostructured electrode materials. The integration of these approaches is anticipated to contribute significantly to the development of wearable, noninvasive, and continuous glucose monitoring systems, which are of great importance for personalized healthcare and diabetes management.

References

Chung, Y., & Kwon, Y. (2015). A study on performance improvement of glucose sensor adopting a catalyst using new cross liker. Korean Chemical Engineering Research, 53(6), 802-807.

Christwardana, M., Ji, J., Chung, Y., & Kwon, Y. (2017). Highly sensitive glucose biosensor using new glucose oxidase based biocatalyst. Korean Journal of Chemical Engineering, 34, 2916-2921.

Zhang, Y., Li, M., Cui, Y., Hong, X., & Du, D. (2018). Using of Tyramine Signal Amplification to Improve the Sensitivity of ELISA for Aflatoxin B 1 in Edible Oil Samples. Food Analytical Methods, 11, 2553-2560.

Wang, F., Zhu, Y., Qian, L., Yin, Y., Yuan, Z., Dai, Y., ... & Qiu, F. (2024). Lamellar Ti3C2 MXene composite decorated with platinum-doped MoS2 nanosheets as electrochemical sensing functional platform for highly sensitive analysis of organophosphorus pesticides. Food Chemistry, 459, 140379.

Guoqiang, G., Liang, Q., Yani, Z., Pengyun, W., Fanzhuo, K., Yuyang, Z., ... & Bin, Z. (2025). Recent advances in glucose monitoring utilizing oxidase electrochemical biosensors integrating carbon-based nanomaterials and smart enzyme design. Frontiers in Chemistry, 13, 1591302.

Jun, S., Xin, Z., Hanping, M., Xiaohong, W., Xiaodong, Z., & Hongyan, G. (2016). Identification of pesticide residue level in lettuce based on hyperspectra and chlorophyll fluorescence spectra. International Journal of Agricultural and Biological Engineering, 9(6), 231-239.

Ma, X., Huang, W., Song, Y., Han, J., Wu, J., Wang, L., & Wang, Y. (2022). Novel recyclable UCST-type immobilized glucose isomerase biocatalyst with excellent performance for isomerization of glucose to fructose. Journal of Agricultural and Food Chemistry, 70(43), 13959-13968.

Li, X., Li, C., Zhang, S., Cui, C., Li, J., & Gao, Q. (2021). Simple and fast colorimetric and electrochemical methods for the ultrasensitive detection of glucose. Analytical and Bioanalytical Chemistry, 413, 5725-5731.

Nazari, M., Kashanian, S., Parnianchi, F., Hasanvand, Z., Mohebbi, M., Joseph, Y., & Rahimi, P. (2024). Electrochemical Sensing Based on Nanofibers Modified Electrodes for Application in Diagnostic, Food and Waste Water Samples. ChemElectroChem, 11(1), e202300385.

Kim, J., Campbell, A. S., & Wang, J. (2018). Wearable non-invasive epidermal glucose sensors: A review. Talanta, 177, 163-170.

Sakdaphetsiri, K., Thaweeskulchai, T., Sukmas, W., Wang, J., Schulte, A., & Rodthongkum, N. (2025). Laser-induced graphene electrode modified by platinum nanoparticle/zein/gelatin/glucose oxidase for non-invasive glucose sensor in multiple biofluids. Analytica Chimica Acta, 1353, 343974.

Zhu, H., Shi, F., Peng, M., Zhang, Y., Long, S., Liu, R., ... & Yang, Z. (2025). Non-Enzymatic Electrochemical Glucose Sensors Based on Metal Oxides and Sulfides: Recent Progress and Perspectives. Chemosensors, 13(1), 19. https://doi.org/10.3390/chemosensors13010019

Franceschini, F.; Payo, M.R.; Schouteden, K.; Ustarroz, J.; Locquet, J.P.; Taurino, I. MBE grown vanadium oxide thin films for enhanced non-enzymatic glucose sensing. Adv. Funct. Mater. 2023, 33, 2304037.

Daci, M., Berisha, L., Mercatante, D., Rodriguez-Estrada, M. T., Jin, Z., Huang, Y., & Amorati, R. (2024). Advancements in Biosensors for Lipid Peroxidation and Antioxidant Protection in Food: A Critical Review. Antioxidants, 13(12), 1484. https://www.mdpi.com/2076-3921/13/12/1484

Kartlaşmış, K. (2017). Glikoz Tayinine Yönelik Yeni Bir Biyosensör. Yüksek Lisans Tezi, Çukurova Üniversitesi, Sağlık Bilimlimleri Enstitüsü, Tıbbi Biyokimya Anabilim Dalı, Adana.

Çoğal, S. (2017). Grafen oksit-polianilin nanokompozit temelli amperometrik glukoz biyosensörü geliştirilmesi. Akademik Gıda, 15(2), 124-129. https://doi.org/10.24323/akademik-gida.333663

Subhan, M. A., Neogi, N., Choudhury, K. P., & Rahman, M. M. (2025). Advances in Biosensor Applications of Metal/Metal-Oxide Nanoscale Materials. Chemosensors, 13(2), 49.

https://www.mdpi.com/2227-9040/13/2/49

Pikelny, V., & Hwang, J. (2003). Hydrogen peroxide oxidation and reduction on Pt electrodes. The Electrochemical Society Meeting Abstracts, 203(1), 241. https://www.electrochem.org/dl/ma/203/pdfs/0241.pdf

Bük, V. (2014). Aljinat-CuO-GOD Temelli Amperometrik Glukoz Biyosensörünün Geliştirilmesi. Yüksek Lisans Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı, Ankara

Clark, L. C., & Lyons, C. (1962). Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 102(1), 29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x

Guilbault, G.G.; Lubrano, G.J. An Enzyme Electrode for the Amperometric Determination of Glucose. Anal. Chim. Acta 1973, 64, 439–455

Tonelli D, Gualandi I, Scavetta E, Mariani F. Focus Review on Nanomaterial-Based Electrochemical Sensing of Glucose for Health Applications. Nanomaterials. 2023; 13(12):1883. https://doi.org/10.3390/nano13121883

Apetrei, R.M.; Camurlu, P. Facile copper-based nanofibrous matrix for glucose sensing: Eenzymatic vs. non-enzymatic. Bioelectrochemistry 2021, 140, 107751

Bi, R.; Ma, X.; Miao, K.; Ma, P.; Wang, Q. Enzymatic Biosensor Based on Dendritic Gold Nanostructure and Enzyme Precipitation Coating for Glucose Sensing and Detection. Enzyme Microb. Technol. 2023, 162, 110132.

Chavez-Urbiola, I.R.; Reséndiz-Jaramillo, A.Y.; Willars-Rodriguez, F.J.; Martinez-Saucedo, G.; Arriaga, L.G.; Alcantar-Peña, J.; Escalona-Villalpando, R.A.; Ledesma-García, J. Glucose Biosensor Based on a Flexible Au/ZnO Film to Enhance the Glucose Oxidase Catalytic Response. J. Electroanal. Chem. 2022, 926, 116941.

Estrada-Osorio, D.V.; Escalona-Villalpando, R.A.; Gutiérrez, A.; Arriaga, L.G.; Ledesma-García, J. Poly-L-Lysine-Modified with Ferrocene to Obtain a Redox Polymer for Mediated Glucose Biosensor Application. Bioelectrochemistry 2022, 146, 108147.

Wang, Y.; Zhao, J.; Yang, T.; Zhang, Y.; Tao, D.; Hasebe, Y.; Zhang, Z. Electrochemical Evaluation of Sulfide Mineral Modified Glassy Carbon Electrode as Novel Mediated Glucose Biosensor. J. Electroanal. Chem. 2021, 894, 115357.

Bük, V., Emregül, E., & Emregül, K. C. (2017). Alginate copper oxide nano-biocomposite as a novel material for amperometric glucose biosensing. Materials Science and Engineering: C, 74, 307–314. https://doi.org/10.1016/j.msec.2016.12.003

Updike, S. J., & Hicks, G. P. (1967). The enzyme electrode. Nature, 214, 986–988.)

Park S, Boo H, Chung TD (2006) Electrochemical non-enzymatic glucose sensors. Anal Chim Acta 556:46–57. https://doi.org/10.1016/j.aca.2005.05.080

Juska, V.B.; Pemble, M.E. A Critical Review of Electrochemical Glucose Sensing: Evolution of Biosensor Platforms Based on Advanced Nanosystems. Sensors 2020, 20, 6013https://doi.org/10.3390/s20216013

Salman, F., Güler, M., & Yıldız, A. (2024). Metal nanopartikül temelli elektrokatalizör sentezi ve elektrokimyasal hidrojen peroksit sensörü. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(1), 45–58. https://dergipark.org.tr/en/download/article-file/2763699

Wang, J. (2008). Electrochemical glucose biosensors. Chemical Reviews, 108(2), 814–825. https://doi.org/10.1021/cr068123a

Cetinkaya, A., Kaya, S. I., & Ozkan, S. A. (2024). A collection of the best practice examples of electroanalytical applications in education: from polarography to sensors. Journal of Solid State Electrochemistry, 28(3), 869-895.

YSI Life Sciences. (n.d.). YSI 2300 Glucose & Lactate Analyzer. https://www.ysi.com/ysi-2300

Beaufils, C., Man, H.-M., de Poulpiquet, A., Mazurenko, I., & Lojou, E. (2021). From enzyme stability to enzymatic bioelectrode stabilization processes. Catalysts, 11(4), 497. https://doi.org/10.3390/catal11040497

Bartlett, P. N., & Whitaker, R. G. (1987). Electrochemical immobilization of enzymes: Part I. Theory. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 224(1–2), 27–35. https://doi.org/10.1016/0022-0728(87)88003-6

Aykut, U., & Temiz, H. (2006). Biyosensörler ve gıdalarda kullanımı. Gıda Teknolojileri Elektronik Dergisi, 2006(3), 51–59. https://avesis.omu.edu.tr/yayin/78ad9aae-de32-4e39-8746-77c1082c379e/biyosensorler-ve-gidalarda-kullanimi

Keskin, M., & Arslan, F. (2020). Biyosensörler. Gazi Üniversitesi Fen Fakültesi Dergisi, 1(1–2), 51–60. https://doi.org/10.5281/zenodo.4317958

Vardar, G., & Hanikoğlu, F. (2022). Biyosensörler ve biyokimya alanındaki uygulamaları. In D. Yücel (Ed.), Güncel biyokimya çalışmaları IV (pp. 65–80). Akademisyen Kitabevi. https://hdl.handle.net/20.500.13055/295

Wang, J. (2005). Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis, 17(1), 7–14. https://doi.org/10.1002/elan.200403113

Nakabayashi, Y., Omayu, A., Yagi, S., Nakamura, K., & Motonaka, J. (2001). Evaluation of osmium(II) complexes as electron transfer mediators accessible for amperometric glucose sensors. Analytical Sciences, 17(8), 945–950. https://doi.org/10.2116/analsci.17.945

Liu, G., & Lin, Y. (2006). Electrochemical sensor and biosensor platforms based on nanomaterials for environmental and biological monitoring. Sensors, 6(5), 556–579. https://doi.org/10.3390/s6050556

Cass, A.E.G.; Davis, G.; Francis, G.D.; Hill, H.A.O.; Aston, W.J.; Higgins, I.J.; Plotkin, E.V.; Scott, L.D.L.; Turner, A.P.F. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal. Chem. 2002, 56, 667–671.

Lalaoui, N., Holzinger, M., & Cosnier, S. (2016). Direct electron transfer at enzyme-modified electrodes: Recent developments. Electroanalysis, 28(1), 27–37. https://doi.org/10.1002/elan.201500471

Willner, I., & Katz, E. (2000). Integration of layered redox proteins and conductive supports for bioelectronic applications. Angewandte Chemie International Edition, 39(7), 1180–1218. https://doi.org/10.1002/(SICI)1521-3773(20000403)39:73.0.CO;2-5

Saha, T.; Caño, R.D.; Mahato, K.; De la Paz, E.; Chen, C.R.; Ding, S.C.; Yin, L.; Wang, J. Wearable electrochemical glucose sensors in diabetes management: A comprehensive review. Chem. Rev. 2023, 123, 7854–7889.

Adachi, T., Kitazumi, Y., Shirai, O., & Kano, K. (2020). Direct electron transfer-type bioelectrocatalysis of redox enzymes at nanostructured electrodes. Catalysts, 10(2), 236. https://doi.org/10.3390/catal10020236

Şahin, S. (2019). A self-powered detection of glucose using glucose/air enzymatic fuel cell on a single chip. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6(2), 135-146.

Kurnaz Yetim, N., Hasanoğlu Özkan, E., & Sarı, N. (2019). Polimerik nanoküreler üzerine enzim immobilizasyonu ve optimizasyonu. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 14(1), 97–104. https://doi.org/10.29233/sdufeffd.479246

Libertino, S., Aiello, V., Scandurra, A., Renis, M., & Sinatra, F. (2008). Immobilization of the enzyme glucose oxidase on both bulk and porous SiO₂ surfaces. Sensors, 8(9), 5637–5648. https://doi.org/10.3390/s8095637

Nery, E. W., & Kubota, L. T. (2015). Evaluation of enzyme immobilization methods for paper-based devices—A glucose oxidase study. Journal of Pharmaceutical and Biomedical Analysis, 117, 551–559. https://doi.org/10.1016/j.jpba.2015.08.041

Sheldon, R. A. (2007). Enzyme immobilization: The quest for optimum performance. Advanced Synthesis & Catalysis, 349(8–9), 1289–1307. https://doi.org/10.1002/adsc.200700082

Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40(6), 1451–1463. https://doi.org/10.1016/j.enzmictec.2007.01.018

Chang, T. M. S. (2005). Therapeutic applications of polymeric artificial cells. Nature Reviews Drug Discovery, 4(3), 221–235. https://doi.org/10.1038/nrd1661

Gerard, M., Chaubey, A. and Malhotra, B.D. 2002. Application of conducting polymer

to biosensors. Biosens. Bioelectron., 5, 345.

Andreescu, S. and Sadik, O.A. 2004. Trends and challenges in biochemical sensors for

clinical and environmental monitoring. Pure Appl. Chem., 76, 861

Luong, J. H. T., Narayan, T., Solanki, S., & Malhotra, B. D. (2020). Recent advances of conducting polymers and their composites for electrochemical biosensing applications. Journal of Functional Biomaterials, 11(4), 71. https://doi.org/10.3390/jfb11040071

Soto J, Hughes T, Li YS. Silicon-Based Glucose Oxidase Working Electrode for Glucose Sensing. ACS Omega. 2019 Nov;4(19):18312-18316. DOI: 10.1021/acsomega.9b02384. PMID: 31720532; PMCID: PMC6844104.

Udomsom, S.; Mankong, U.; Paengnakorn, P.; Theera‐Umpon, N. Novel Rapid Protein Coating Technique for Silicon Photonic Biosensor to Improve Surface Morphology and Increase Bioreceptor Density. Coatings 2021, 11, 595. https://doi.org/10.3390/ coatings11050595

Chaki, N.K. and Vijayamohanan, K. 2002. Self-assembled monolayers as tunable platform for biosensor applications. Biosens. Bioelectron., 17, 1–12.)

Datta, S., Christena, L. R., & Rajaram, Y. R. S. (2013). Enzyme immobilization: An overview on techniques and support materials. 3 Biotech, 3(1), 1–9. https://doi.org/10.1007/s13205-012-0071-7

Doğan, E. (2019). İnvertaz ve oksidoredüktaz tipi enzim kullanılarak oluşturulan polimer bazlı enzim elektrotları ile analitik tayin uygulamaları.Yüksek lisans tezi, Karabük Üniversitesi, Fen Bilimleri Enstitüsü. https://acikbilim.yok.gov.tr/handle/20.500.12812/98264

Tu, X., Zhao, Y., Luo, S., Luo, X., & Feng, L. (2012). Direct electrochemical sensing of glucose using glucose oxidase immobilized on functionalized carbon nanotubes via a novel metal chelate-based affinity method. Microchimica Acta, 177(1–2), 159–166. https://doi.org/10.1007/s00604-012-0766-9

Sakalauskiene, L., Popov, A., Kausaite-Minkstimiene, A., Ramanavicius, A., & Ramanaviciene, A. (2022). The impact of glucose oxidase immobilization on dendritic gold nanostructures on the performance of glucose biosensors. Biosensors, 12(5), 320. https://doi.org/10.3390/bios12050320

González-Gaitán, C., Ruiz-Rosas, R., Morallón, E., & Cazorla-Amorós, D. (2017). Effects of the surface chemistry and structure of carbon nanotubes on the coating of glucose oxidase and electrochemical biosensors performance. RSC Advances, 7(43), 26867–26877. https://doi.org/10.1039/C7RA02380D

Shen, F., Arshi, S., Magner, E., Ulstrup, J., & Xiao, X. (2022). One-step electrochemical approach of enzyme immobilization for bioelectrochemical applications. Synthetic Metals, 291, 117205. https://doi.org/10.1016/j.synthmet.2022.117205

Eklenecek

Heck, T., Faccio, G., Richter, M., & Thöny-Meyer, L. (2013). Enzyme-catalyzed protein crosslinking. Applied Microbiology and Biotechnology, 97(2), 461–475. https://doi.org/10.1007/s00253-012-4569-z

Maddock, R. M. A., Pollard, G. J., Perry, J. J., Race, P. R., & Moreau, N. G. (2020). Enzyme-catalysed polymer cross-linking: Biocatalytic tools for chemical biology, materials science and beyond. Biopolymers, 111(10), e23390. https://doi.org/10.1002/bip.23390

Altun, A., Apetrei, R. M., & Camurlu, P. (2020). Reagentless amperometric glucose biosensors: Ferrocene-tethering and copolymerization. Journal of the Electrochemical Society, 167(10), 107507.

Altun, A., Apetrei, R. M., & Camurlu, P. (2019). The effect of copolymerization and carbon nanoelements on the performance of poly (2, 5-di (thienyl) pyrrole) biosensors. Materials Science and Engineering: C, 105, 110069

Altun, A. (2019). İletken polimer tabanlı amperometrik biyosensörlerin geliştirilmesi.Akdeniz Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı, http://acikerisim.akdeniz.edu.tr/xmlui/handle/123456789/4183

Imam, H. T., Marr, P. C., & Marr, A. C. (2021). Enzyme entrapment, biocatalyst immobilization without covalent attachment. Green Chemistry, 23(14), 4981–4995. https://doi.org/10.1039/D1GC01852C

Gülay, S., & Şanlı-Mohamed, G. (2012). Immobilization of thermoalkalophilic recombinant esterase enzyme by entrapment in silicate coated Ca-alginate beads and its hydrolytic properties. International Journal of Biological Macromolecules, 50(3), 545–551. https://doi.org/10.1016/j.ijbiomac.2012.01.017

Yalçınkaya, Z., Turan, H., & Demir, H. (2017). Importance of enzyme immobilization for human health. Medical Science and Discovery, 4(9), 69–71. https://doi.org/10.17546/msd.339037

Scouten, W.H., Luong, J.H.T. and Brown, R.S. 1995. Enzyme or protein immobilization techniques for applications in biosensors design. Tibtech., 13, 178–185

Karakuş, E., & Erdemir, E. (2021). Colorimetric and electrochemical detection of SARS-CoV-2 spike antigen with a gold nanoparticle-based biosensor. Analytica Chimica Acta, 1182, 338939. https://doi.org/10.1016/j.aca.2021.338939

Geim, A.K., 2009. Graphene: status and prospects. Science 324: 1530–1534.

Chen, D., Feng, H., Li, J., 2012. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chemical Reviews 112: 6027-6053.

Kadadou, D.; Tizani, L.; Wadi, V.S.; Banat, F.; Alsafar, H.; Yousef, A.F.; Barceló, D.; Hasan, S.W. Recent advances in the biosensors application for the detection of bacteria and viruses in wastewater. J. Environ. Chem. Eng. 2021, 10, 107070.

Ngan, D. T. T., Thuy, V. T., Van Tuan, D., Dien, N. D., & Tam, P. D. (2025). MoS2/Ag Composite-Based Biosensor with Improved Sensitivity and Selectivity for Glucose Detection. Journal of Electronic Materials, 54(5), 3981-3993.

Dey B, Ahmad W, Sarkhel G et al (2023) Fabrication of niobium metal organic frameworks anchored carbon nanofiber hybrid film for simultaneous detection of xanthine, hypoxanthine and uric acid. Microchem J 186:108295. https://doi.org/10.1016/j.microc.2022.108295

Shah, S. S., & Aziz, M. A. (2024). Properties of electrode materials and electrolytes in supercapacitor technology. Journal of Chemistry and Environment, 3(1). https://doi.org/10.56946/jce.v3i1.309

Zabitler, D., Ülker, E., Turan, K., Erdoğan, N. Ö., & Aydoğdu Tığ, G. (2025). Electrochemical sensor for biological samples monitoring. Topics in Catalysis, 1-31.

Pushpanjali PA, Manjunatha JG, Hareesha N (2021) An overview of recent developments of carbon-based sensors for the analysis of drug molecules. J Electrochem Sci Eng 11:161–177. https://doi.org/10.5599/JESE.999

Baig N, Sajid M, Saleh TA (2019) Recent trends in nanomaterial-modified electrodes for electroanalytical applications. TrAC—Trends Anal Chem 111:47–61. https://doi.org/10.1016/j.trac.2018.11.044

Jung, J.; Lim, S. ZnO Nanowire-Based Glucose Biosensors with Different Coupling Agents. Appl. Surf. Sci. 2013, 265, 24–29.

Wang, K.; Liu, Q.; Guan, Q.-M.; Wu, J.; Li, H.-N.; Yan, J.-J. Enhanced Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose via Synergy Effect of Graphene and CdS Nanocrystals. Biosens. Bioelectron. 2011, 26, 2252–2257.

Wang, Y.; Liu, L.; Li, M.; Xu, S.; Gao, F. Multifunctional Carbon Nanotubes for Direct Electrochemistry of Glucose Oxidase and Glucose Bioassay. Biosens. Bioelectron. 2011, 30, 107–111.

Buk, V., & Pemble, M. E. (2019). A highly sensitive glucose biosensor based on a micro disk array electrode design modified with carbon quantum dots and gold nanoparticles. Electrochimica Acta, 298, 97–105. https://doi.org/10.1016/j.electacta.2018.12.068

Downloads

Published

2025-08-26

How to Cite

bicer, abdullah, & Işık, mesut. (2025). Advances in Glucose Oxidase-Based Electrochemical Biosensors: Generational Development, Immobilization Strategies, and Nanostructure Applications. International Bulletin of Electrochemical Methodology, 2(1). https://doi.org/10.5281/zenodo.16949411

Issue

Section

Articles