Biochar-Based Screen-Printed Sensors: A Sustainable Solution for Electrochemical Applications


Abstract views: 39 / PDF downloads: 16

Authors

DOI:

https://doi.org/10.5281/zenodo.14568761

Keywords:

Biomass, biochar, screen-printed (bio) sensors, electroanalytical methods

Abstract

Biochar, a sustainable and cost-effective material derived from biomass, has emerged as a versatile candidate for constructing advanced electrochemical sensors, particularly screen-printed sensors and biosensors. This review explores the utilization of biochar in the fabrication of screen-printed sensors, emphasizing its properties, such as a high surface area, chemical stability, and tunable functionalities, which are crucial for electroanalytical applications. Key factors influencing biochar properties, including feedstock composition, pyrolysis conditions, and activation methods, are thoroughly analyzed. The study highlights the integration of biochar into various screen-printed sensor platforms, demonstrating its effectiveness in enhancing sensitivity, selectivity, and durability across a range of analytes, from pharmaceuticals to environmental pollutants. Furthermore, the review discusses innovative applications, such as biochar-based flexible and wearable devices, biosensors, immunosensors, and resistive humidity sensors, underscoring their potential in real-world applications. Challenges, including variability in biochar properties and limited electrical conductivity, are also addressed, along with future perspectives for improving standardization and performance. By bridging waste valorization with cutting-edge sensor technologies, biochar-derived screen-printed electrodes represent a promising pathway toward sustainable and efficient electrochemical sensing platforms.

Author Biographies

Ján Labuda, Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Analytical Chemistry, Radlinského 9, 812 37, Bratislava, Slovakia

prof. Ing. Ján Labuda, DrSc.

Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Analytical Chemistry, Radlinského 9, 812 37, Bratislava, Slovakia

Ľubomír Švorc, Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Analytical Chemistry, Radlinského 9, 812 37, Bratislava, Slovakia

prof. Ing. Ľubomír Švorc, DrSc.

Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Analytical Chemistry, Radlinského 9, 812 37, Bratislava, Slovakia

References

Taleat Z, Khoshroo A, Mazloum-Ardakani M. Screen-printed electrodes for biosensing: A review (2008-2013). Microchim Acta. 2014;181(9–10):865–91.

Wu G, Wu L, Zhang H, Wang X, Xiang M, Teng Y, et al. Research progress of screen-printed flexible pressure sensor. Sensors Actuators A Phys. 2024;374:115512.

Gong X, Huang K, Wu Y H, Zhang X S. Recent progress on screen-printed flexible sensors for human health monitoring. Sensors Actuators A Phys. 2022;345:113821.

Chu Z, Peng J, Jin W. Advanced nanomaterial inks for screen-printed chemical sensors. Sensors Actuators B Chem. 2017;243:919–26.

Bilias F, Sewu D D, Woo S H, Anastopoulos I, Verheijen F, Lehmann J. Glossary of terms used in biochar research (IUPAC Technical Report). Pure Appl. Chem. 2024; 1 July: doi.org/10.1515/pac-2021-0106.

Ercan B, Alper K, Ucar S, Karagoz S. Comparative studies of hydrochars and biochars produced from lignocellulosic biomass via hydrothermal carbonization, torrefaction and pyrolysis. J Energy Inst. 2023;109:101298.

Yaashikaa P R, Kumar P S, Varjani S, Saravanan A. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol Reports. 2020;28:e00570.

Wang J, Wang S. Preparation, modification and environmental application of biochar: A review. J Clean Prod. 2019;227:1002–22.

De Almeida L S, Oreste E Q, Maciel J V., Heinemann MG, Dias D. Electrochemical devices obtained from biochar: Advances in renewable and environmentally-friendly technologies applied to analytical chemistry. Trends Environ Anal Chem. 2020;26:e00089.

Varma RS. Biomass-derived renewable carbonaceous materials for sustainable chemical and environmental applications. ACS Sustain Chem Eng. 2019;7(7):6458–70.

Ippolito J A, Cui L, Kammann C, Wrage-Mönnig N, Estavillo J M, Fuertes-Mendizabal T, et al. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar. 2020;2(4):421–38.

Szczęśniak B, Phuriragpitikhon J, Choma J, Jaroniec M. Recent advances in the development and applications of biomass-derived carbons with uniform porosity. J Mater Chem A. 2020; 8(36):18464–91.

Yang K, Jing W, Wang J, Zhang K, Li Y, Xia M, et al. Structure–Activity Mechanism of Sodium Ion Adsorption and Release Behaviors in Biochar. Agriculture. 2024;14(8):1–13.

Sakhiya AK, Anand A, Kaushal P. Production, activation, and applications of biochar in recent times. Biochar. 2020;2(3)253–85.

Antic Gorrazzi S, Massazza D, Pedetta A, Silva L, Prados B, Fouga G, et al. Biochar as a substitute for graphite in microbial electrochemical technologies. RSC Sustain. 2023;1(5): 1200–10.

Chacón FJ, Cayuela ML, Roig A, Sánchez-Monedero MA. Understanding, measuring and tuning the electrochemical properties of biochar for environmental applications. Rev Environ Sci Biotechnol. 2017;16(4):695–715.

Yahya M A, Al-Qodah Z, Ngah C W Z. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renew Sustain Energy Rev. 2015; 46:218–35.

Mamaní A, Sardella MF, Giménez M, Deiana C. Highly microporous carbons from olive tree pruning: Optimization of chemical activation conditions. J Environ Chem Eng. 2019;7(1): 102830.

Mohan D, Sarswat A, Ok YS, Pittman CU. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – A critical review. Bioresour Technol. 2014;160:191–202.

Xing J, Li L, Li G, Xu G. Feasibility of sludge-based biochar for soil remediation: Characteristics and safety performance of heavy metals influenced by pyrolysis temperatures. Ecotoxicol Environ Saf. 2019;180:457–65.

Khataee A, Gholami P, Kalderis D, Pachatouridou E, Konsolakis M. Preparation of novel CeO2-biochar nanocomposite for sonocatalytic degradation of a textile dye. Ultrason Sonochem. 2017;41:503–13.

Mian MM, Liu G, Fu B. Conversion of sewage sludge into environmental catalyst and microbial fuel cell electrode material: A review. Sci Total Environ. 2019;666:525–39.

Kalinke C, De Oliveira PR, Bonacin JA, Janegitz BC, Mangrich AS, Marcolino-Junior LH, et al. State-of-the-art and perspectives in the use of biochar for electrochemical and electroanalytical applications. Green Chem. 2021;23(15):5272–308.

Spanu D, Binda G, Dossi C, Monticelli D. Biochar as an alternative sustainable platform for sensing applications: A review. Microchem J. 2020;159:105506. Available from: https://doi.org/10.1016/j.microc.2020.105506

Cancelliere R, Cianciaruso M, Carbone K, Micheli L. Biochar: A sustainable alternative in the development of electrochemical printed platforms. Chemosensors. 2022;10(8):344–66.

Li Y, Xu R, Wang H, Xu W, Tian L, Huang J, et al. Recent Advances of Biochar-Based Electrochemical Sensors and Biosensors. Biosensors. 2022;12(6):377–397.

Fu Z, Zhao J, Guan D, Wang Y, Xie J, Zhang H, et al. A comprehensive review on the preparation of biochar from digestate sources and its application in environmental pollution remediation. Sci Total Environ. 2024;912:168822.

Deng J, Xiong T, Wang H, Zheng A, Wang Y. Effects of cellulose, hemicellulose, and lignin on the structure and morphology of porous carbons. ACS Sustain Chem Eng. 2016;4(7):3750–56.

Gholizadeh M, Meca S, Zhang S, Clarens F, Hu X. Understanding the dependence of biochar properties on different types of biomass. Waste Manag. 2024;182:142–63.

Kopp Alves A, Hauschild T, Basegio TM, Amorim Berutti F. Influence of lignin and cellulose from termite-processed biomass on biochar production and evaluation of chromium VI adsorption. Sci Rep. 2024;14(1):1–11.

Chen J, Zhou J, Zheng W, Leng S, Ai Z, Zhang W, et al. A complete review on the oxygen-containing functional groups of biochar: Formation mechanisms, detection methods, engineering, and applications. Sci Total Environ. 2024;946:174081.

Wu D, Chen Q, Wu M, Zhang P, He L, Chen Y, et al. Heterogeneous compositions of oxygen-containing functional groups on biochars and their different roles in rhodamine B degradation. Chemosphere. 2022;292:133518.

Naydenova I, Radoykova T, Petrova T, Sandov O, Valchev I. Utilization Perspectives of Lignin Biochar from Industrial Biomass Residue. Molecules. 2023;28(12):4842–55.

Smil V. Crop Residues : Agriculture’s largest harvest phytomass agricultural. Bioscience. 1999;49(4):299–308.

Cha JS, Park SH, Jung SC, Ryu C, Jeon JK, Shin MC, et al. Production and utilization of biochar: A review. J Ind Eng Chem. 2016;40:1–15.

Zhang X, Zhang P, Yuan X, Li Y, Han L. Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar. Bioresour Technol. 2020;296:122318.

Mariyam S, Alherbawi M, Pradhan S, Al-Ansari T, McKay G. Biochar yield prediction using response surface methodology: effect of fixed carbon and pyrolysis operating conditions. Biomass Convers Biorefinery. 2023;14(22):28879–92.

Altıkat A, Alma MH, Altıkat A, Bilgili ME, Altıkat S. A comprehensive study of Biochar Yield and Quality Concerning Pyrolysis Conditions: A Multifaceted Approach. Sustainability. 2024;16(2):937–59.

Tomczyk A, Sokołowska Z, Boguta P. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol. 2020;19(1):191–215.

Awad M I, Makkawi Y, Hassan N M. Yield and energy modeling for biochar and bio-oil using pyrolysis temperature and biomass constituents. ACS Omega. 2024;9(16):18654–67.

De Almeida SGC, Tarelho L A C, Hauschild T, Costa M A M, Dussán K J. Biochar production from sugarcane biomass using slow pyrolysis: Characterization of the solid fraction. Chem Eng Process - Process Intensif. 2022;179:109054.

Cong P, Song S, Song W, Dong J, Zheng X. Biochars prepared from biogas residues: temperature is a crucial factor that determines their physicochemical properties. Biomass Convers Biorefinery. 2022;1–15.

Lu G Q, Low J C F, Liu C Y, Lua A C. Surface area development of sewage sludge during pyrolysis. Fuel. 1995;74(3):344–8.

Leng L, Huang H. An overview of the effect of pyrolysis process parameters on biochar stability. Bioresour Technol. 2018;270:627–42.

Ronsse F, van Hecke S, Dickinson D, Prins W. Production and characterization of slow pyrolysis biochar: Influence of feedstock type and pyrolysis conditions. GCB Bioenergy. 2013;5(2):104–15.

Chun Y, Lee S K, Yoo H Y, Kim, S. W. Recent advancements in biochar production according to feedstock classification, pyrolysis conditions, and applications: A review. BioResources. 2021; 16(3):6512–47.

Wang Y, Chen L, Zhu Y, Fang W, Tan Y, He Z, et al. Research status, trends, and mechanisms of biochar adsorption for wastewater treatment: a scientometric review. Environ Sci Eur. 2024;36(1):25–42.

Srivatsav P, Bhargav BS, Shanmugasundaram V, Arun J, Gopinath KP, Bhatnagar A. Biochar as an eco-friendly and economical adsorbent for the removal of colorants (dyes) from aqueous environment: A review. Water (Switzerland). 2020;12(12):1–27.

Jha S, Gaur R, Shahabuddin S, Tyagi I. Biochar as Sustainable Alternative and Green Adsorbent for the Remediation of Noxious Pollutants: A Comprehensive Review. Toxics. 2023;11(2):1–23.

Sakhiya A K, Baghel P, Anand A, Vijay V K, Kaushal P. A comparative study of physical and chemical activation of rice straw derived biochar to enhance Zn+2 adsorption. Bioresour Technol Reports. 2021;15:100774.

Ademiluyi FT, David-West E O. Effect of chemical activation on the adsorption of heavy metals using activated carbons from waste materials. ISRN Chem Eng. 2012;2012:1–5.

Mochizuki T, Kubota M, Matsuda H, D’Elia Camacho L F. Adsorption behaviors of ammonia and hydrogen sulfide on activated carbon prepared from petroleum coke by KOH chemical activation. Fuel Process Technol. 2016;144:164–9.

Sajjadi B, Chen W Y, Egiebor N O. Chemical activation of biochar for energy and environmental applications: a comprehensive review. Rev Chem Eng. 2019;35(6):735–76.

Khan MN, Lacroix M, Wessels C, Van Dael M. Converting wastewater cellulose to valuable products: A techno-economic assessment. J Clean Prod. 2022;365:132812.

Kim J G, Kim H Bin, Baek K. Novel electrochemical method to activate biochar derived from spent coffee grounds for enhanced adsorption of lead (Pb). Sci Total Environ. 2023;886:163891.

Feliz Florian G, Ragoubi M, Leblanc N, Taouk B, Abdelouahed L. Biochar production and its potential application for biocomposite materials: A comprehensive review. J Compos Sci. 2024;8(6):1–25.

Gemeiner P, Sarakhman O, Hatala M, Ház A, Roupcová P, Mackuľak T, et al. A new generation of fully-printed electrochemical sensors based on biochar/ethylcellulose-modified carbon electrodes: Fabrication, characterization and practical applications. Electrochim Acta. 2024;487:144161.

Bimová P, Roupcová P, Klouda K, Matejová L, Stanová AV, Grabicová K, et al. Biochar - An efficient sorption material for the removal of pharmaceutically active compounds, DNA and RNA fragments from wastewater. J Environ Chem Eng. 2021;9(4):105746.

Lee J, Kim K H, Kwon E E. Biochar as a catalyst. Renew Sustain Energy Rev. 2017;77:70–9.

Li L, Huang T, He S, Liu X, Chen Q, Chen J, et al. Waste eggshell membrane-templated synthesis of functional Cu2+-Cu+/biochar for an ultrasensitive electrochemical enzyme-free glucose sensor. RSC Adv. 2021;11(31):18994–9.

Sharma G, Bhogal S, Gupta VK, Agarwal S, Kumar A, Pathania D, et al. Algal biochar reinforced trimetallic nanocomposite as adsorptional/photocatalyst for remediation of malachite green from aqueous medium. J Mol Liq. 2019;275:499–509.

Lyu H, Zhang Q, Shen B. Application of biochar and its composites in catalysis. Chemosphere. 2020;240:124842.

Wei G, Li Z, Zhang L, Deng Y, Shao L, Liu Z. Improve the catalytic activity of feooh/bentonite material by mechanical activation. J Chil Chem Soc. 2017;62(1):3407–10.

Fang G, Gao J, Liu C, Dionysiou D D, Wang Y, Zhou D. Key role of persistent free radicals in hydrogen peroxide activation by biochar: Implications to organic contaminant degradation. Environ Sci Technol. 2014;48(3):1902–10.

Wang H, Guo W, Yin R, Du J, Wu Q, Luo H, et al. Biochar-induced Fe(III) reduction for persulfate activation in sulfamethoxazole degradation: Insight into the electron transfer, radical oxidation and degradation pathways. Chem Eng J. 2019;362:561–9.

Wang Y, Zhao X, Cao D, Wang Y, Zhu Y. Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid. Appl Catal B Environ. 2017;211:79–88.

Yang F, Zhang S, Sun Y, Cheng K, Li J, Tsang D C W. Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal. Bioresour Technol. 2018;265:490–7.

Scroccarello A, Pelle F Della, Bukhari Q U A, Silveri F, Zappi D, Cozzoni E, Compagnone D. Eucalyptus Biochar as a Sustainable Nanomaterial for Electrochemical Sensors. Chem. Proc. 2021:5(1):13.

Bukhari Q U A, Silveri F, Della Pelle F, Scroccarello A, Zappi D, Cozzoni E, et al. Water-phase exfoliated biochar nanofibers from eucalyptus scraps for electrode modification and conductive film fabrication. ACS Sustain Chem Eng. 2021;9(41):13988–98.

Lee J H, Kim D S, Yang J H, Chun Y, Yoo H Y, Han S O, et al. Enhanced electron transfer mediator based on biochar from microalgal sludge for application to bioelectrochemical systems. Bioresour Technol. 2018;264:387–90.

Elancheziyan M, Ganesan S, Theyagarajan K, Duraisamy M, Thenmozhi K, Weng CH, et al. Novel biomass-derived porous-graphitic carbon coated iron oxide nanocomposite as an efficient electrocatalyst for the sensitive detection of rutin (vitamin P) in food and environmental samples. Environ Res. 2022;211:113012.

Cancelliere R, Carbone K, Pagano M, Cacciotti I, Micheli L. Biochar from brewers’ spent grain: A green and low-cost smart material to modify screen-printed electrodes. Biosensors. 2019;9(4):25–7.

Valenga M G P, Martins G, Martins T A C, Didek L K, Gevaerd A, Marcolino-Junior L H, Bergamini M F. Biochar: An environmentally friendly platform for construction of a SARS-CoV-2 electrochemical immunosensor. Sci Total Environ. 2023;858:159797.

Cancelliere R, Di Tinno A, Di Lellis AM, Contini G, Micheli L, Signori E. Cost-effective and disposable label-free voltammetric immunosensor for sensitive detection of interleukin-6. Biosens Bioelectron. 2022;213:114467.

Oliveira PR, Lamy-Mendes AC, Rezende EIP, Mangrich AS, Marcolino Junior LH, Bergamini MF. Electrochemical determination of copper ions in spirit drinks using carbon paste electrode modified with biochar. Food Chem. 2015;171:426–31.

Sant’Anna M V S, Carvalho S W M M, Gevaerd A, Silva J O S, Santos E, Carregosa I S C, et al. Electrochemical sensor based on biochar and reduced graphene oxide nanocomposite for carbendazim determination. Talanta. 2020;220:12133.

Kalinke C, de Oliveira PR, Bonet San Emeterio M, González-Calabuig A, del Valle M, Salvio Mangrich A, et al. Voltammetric electronic tongue based on carbon paste electrodes modified with biochar for phenolic compounds stripping detection. Electroanalysis. 2019;31(11):2238–45.

Wong A, de Lima D G, Ferreira P A, Khan S, da Silva R A B, de Faria J L B, et al. Voltammetric sensing of glyphosate in different samples using carbon paste electrode modified with biochar and copper(II) hexadecafluoro-29H,31 phtalocyanine complex. J Appl Electrochem. 2021;51(5):761–8.

Kalinke C, Oliveira P R, Oliveira G A, Mangrich A S, Marcolino-Junior L H, Bergamini M F. Activated biochar: Preparation, characterization and electroanalytical application in an alternative strategy of nickel determination. Anal Chim Acta. 2017;983:103–11.

Kalinke C, Zanicoski-Moscardi A P, de Oliveira P R, Mangrich A S, Marcolino-Junior L H, Bergamini MF. Simple and low-cost sensor based on activated biochar for the stripping voltammetric detection of caffeic acid. Microchem J. 2020;159:105380.

Sant’Anna M V S, Silva J de OS, Gevaerd A, Lima L S, Monteiro M D S, Carregosa I S C, et al. Selective carbonaceous-based (nano)composite sensors for electrochemical determination of paraquat in food samples. Food Chem. 2022;373:131521.

Xiang Y, Liu H, Yang J, Shi Z, Tan Y, Jin J, et al. Biochar decorated with gold nanoparticles for electrochemical sensing application. Electrochim Acta. 2018;261:464–73.

Švancara I, Walcarius A, Kalcher K, Vytřas K. Carbon paste electrodes in the new millennium. Cent Eur J Chem. 2009;7(4):598–656.

Švancara I, Vytřas K, Kalcher K, Walcarius A, Wang J. Carbon paste electrodes in facts, numbers, and notes: A review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis. Electroanalysis. 2009;21(1):7–28.

Chou C M, Dai Y D, Yuan C, Shen Y H. Preparation of an electrochemical sensor utilizing graphene-like biochar for the detection of tetracycline. Environ Res. 2023;236:116785.

Liu C, Zhang N, Huang X, Wang Q, Wang X, Wang S. Fabrication of a novel nanocomposite electrode with ZnO-MoO3 and biochar derived from mushroom biomaterials for the detection of acetaminophen in the presence of DA. Microchem J. 2021;161:105719.

Dong X, He L, Liu Y, Piao Y. Preparation of highly conductive biochar nanoparticles for rapid and sensitive detection of 17β-estradiol in water. Electrochim Acta. 2018;292:55–62.

Wang J, Yang J, Xu P, Liu H, Zhang L, Zhang S, et al. Gold nanoparticles decorated biochar modified electrode for the high-performance simultaneous determination of hydroquinone and catechol. Sensors Actuators, B Chem. 2020;306:127590.

Allende S, Liu Y, Zafar MA, Jacob M V. Nitrite sensor using activated biochar synthesised by microwave-assisted pyrolysis. Waste Dispos Sustain Energy. 2023;5(1):1–11.

Allende S, Liu Y, Jacob M V. Electrochemical sensing of paracetamol based on sugarcane bagasse-activated biochar. Ind Crops Prod. 2024;211:118241.

Cancelliere R, Di Tinno A, Di Lellis A M, Tedeschi Y, Bellucci S, Carbone K, et al. An inverse-designed electrochemical platform for analytical applications. Electrochem commun. 2020;121:106862.

Wang H, Li S, Lu H, Zhu M, Liang H, Wu X, et al. Carbon-based flexible devices for comprehensive health monitoring. Small Methods. 2023;7(2):1–21.

Rao L, Zhu Y, Duan Z, Xue T, Duan X, Wen Y, et al. Lotus seedpods biochar decorated molybdenum disulfide for portable, flexible, outdoor and inexpensive sensing of hyperin. Chemosphere. 2022;301:134595.

Zhang K, Ge Y, He S, Ge F, Huang Q, Huang Z, et al. Development of new electrochemical sensor based on kudzu vine biochar modified flexible carbon electrode for portable wireless intelligent analysis of clenbuterol. Int J Electrochem Sci. 2020;15:7326–36.

Ganesan S, Sivam S, Elancheziyan M, Senthilkumar S, Ramakrishan SG, Soundappan T, et al. Novel delipidated chicken feather waste-derived carbon-based molybdenum oxide nanocomposite as efficient electrocatalyst for rapid detection of hydroquinone and catechol in environmental waters. Environ Pollut. 2022;293:118556.

Espro C, Satira A, Mauriello F, Anajafi Z, Moulaee K, Iannazzo D, et al. Orange peels-derived hydrochar for chemical sensing applications. Sensors Actuators, B Chem [Internet]. 2021;341:130016.

Fu Q, Shi Z, Wu X, Li Y, Liu L, Shi F, et al. Nannochloropsis Oceanica derived nitrogen-rich macroporous carbon for bi-atomic matching-catalytic flexible dopamine sensor. Biosens Bioelectron X. 2022;11:100184.

Chen X, Lu K, Lin D, Li Y, Yin S, Zhang Z, et al. Hierarchical porous tubular biochar based sensor for detection of trace lead (II). Electroanalysis. 2021;33(2):473–82.

Ahammad A J S, Pal P R, Shah S S, Islam T, Mahedi Hasan M, Qasem M A A, et al. Activated jute carbon paste screen-printed FTO electrodes for nonenzymatic amperometric determination of nitrite. J Electroanal Chem. 2019;832:368–79.

Zheng Y, Yu C, Fu L. Biochar-based materials for electroanalytical applications: An overview. Green Anal Chem. 2023;7(September).

Sobhan A, Jia F, Kelso LC, Biswas SK, Muthukumarappan K, Cao C, et al. A novel activated biochar-based immunosensor for rapid detection of E. coli O157:H7. Biosensors. 2022;12(10):908–22.

Ziegler D, Palmero P, Giorcelli M, Tagliaferro A, Tulliani JM. Biochars as innovative humidity sensing materials. Chemosensors. 2017;5(4):1–16.

Jagdale P, Ziegler D, Rovere M, Tulliani JM, Tagliaferro A. Waste coffee ground biochar: A material for humidity sensors. Sensors (Switzerland). 2019;19(4):1–14.

Ziegler D, Boschetto F, Marin E, Palmero P, Pezzotti G, Tulliani JM. Rice husk ash as a new humidity sensing material and its aging behavior. Sensors Actuators, B Chem. 2021;328:129049.

Afify A S, Ahmad S, Khushnood R A, Jagdale P, Tulliani J M. Elaboration and characterization of novel humidity sensor based on micro-carbonized bamboo particles. Sensors Actuators, B Chem. 2017;239:1251–6.

Spokas K A, Cantrell K B, Novak J M, Archer D W, Ippolito J A, Collins H P, et al. Biochar: A synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual. 2012;41(4):973–89.

Wei D, Li B, Huang H, Luo L, Zhang J, Yang Y, et al. Biochar-based functional materials in the purification of agricultural wastewater: Fabrication, application and future research needs. Chemosphere. 2018;197:165–80.

Downloads

Published

2024-12-30

How to Cite

Sarakhman, O., LABUDA, J., & ŠVORC, Ľubomír. (2024). Biochar-Based Screen-Printed Sensors: A Sustainable Solution for Electrochemical Applications. International Bulletin of Electrochemical Methodology, 1(1), 2024_3. https://doi.org/10.5281/zenodo.14568761

Issue

Section

Articles